structure was observed in Phase III. In the present calculation, however, the II–III transition and the long-period structure in Phase III are ignored for simplicity. The calculation only aims to interpret the experimental results qualitatively.

The Helmholtz free energy A given by Mitsui for a clamped crystal is<sup>4)</sup>

$$A = -\frac{\beta}{2}(P_1^2 + P_2^2) - \beta' P_1 P_2 - \frac{V}{\mu}(P_1 - P_2) + \frac{kTN}{4} \sum_{i=1}^{2} \left\{ \left( 1 + \frac{2P_i}{N\mu} \right) \ln \left( 1 + \frac{2P_i}{N\mu} \right) + \left( 1 - \frac{2P_i}{N\mu} \right) \ln \left( 1 - \frac{2P_i}{N\mu} \right) - 2 \ln 2 \right\}, \quad (1)$$

where  $P_1$  and  $P_2$  are sublattice polarizations,  $\mu$  is the dipole moment of a molecular dipole unit, N is the number of the dipoles per unit volume. The parameter V measures the asymmetry of the potential at a dipole site.<sup>4)</sup> As is well known the elastic Gibbs function for a free crystal contains higher order terms of  $P_i$ 's. Third order terms of  $P_i$ 's may be introduced because of existence of  $(P_1 - P_2)$  term in eq. (1). However, in the present calculation the third order terms are neglected; this means that the asymmetry parameter V is assumed to be independent of lattice strains.\* Then, the resultant elastic Gibbs function G is expressed to the fourth order terms of  $P_i$ 's as;

$$G = -\frac{\beta}{2}(P_1^2 + P_2^2) - \beta' P_1 P_2 - \frac{V}{\mu}(P_1 - P_2) + \frac{\xi}{4}(P_1^4 + P_2^4) + \frac{\zeta}{2}P_1^2 P_2^2 + \frac{kTN}{4}\sum_{i=1}^2 \left\{ \left(1 + \frac{2P_i}{N\mu}\right) \ln\left(1 + \frac{2P_i}{N\mu}\right) + \left(1 - \frac{2P_i}{N\mu}\right) \ln\left(1 - \frac{2P_i}{N\mu}\right) - 2\ln 2 \right\}.$$
 (2)

According to Ishibashi and Takagi<sup>6)</sup> eq. (2) is rewritten by introducing reduced quantities as;

$$g = -\frac{a_1}{2}(x_1^2 + x_2^2) - a_2 x_1 x_2 - (x_1 - x_2) + \frac{a_3}{4}(x_1^4 + x_2^4) + \frac{a_4}{2}x_1^2 x_2^2 + \frac{t}{2}\sum_{i=1}^2 \{(1+x_i)\ln(1+x_i) + (1-x_i)\ln(1-x_i)\},$$
(3)

where  $g = 2(G + kTN \ln 2)/(NV)$ ,  $x_1 = 2P_1/(N\mu)$ ,  $x_2 = 2P_2/(N\mu)$ , t = kT/V,  $a_1 = \beta N\mu^2/(2V)$ ,  $a_2 = \beta' N\mu^2/(2V)$ ,  $a_3 = \xi N^3 \mu^4/(8V)$ , and  $a_4 = \zeta N^3 \mu^4/(8V)$ .

The expansion coefficients  $a_i$  are generally dependent both upon reduced temperature tand upon hydrostatic pressure p as  $a_i = a_i^{00} +$  $a_i^{10}t + a_i^{01}p + a_i^{11}pt + \cdots$ . For simplicity, temperature dependence of  $a_i$  is neglected. The effect of hydrostatic pressure is more significant for the lower-order expansion coefficients. Possible pressure variation of  $a_1$  affects mainly the pressure coefficients of transition points, and it is ignored in the present calculation since the calculation aims to demonstrate the p-Tphase diagram only in a qualitative way. Then, the next lowest expansion coefficient  $a_2$  is assumed to depend linearly upon pressure as

$$a_2 = a_2^{00} + a_2^{01} p. \tag{4}$$

The other coefficients are assumed to be constants.

The spontaneous sublattice polarizations  $x_1^s$ ,  $x_2^s$  are obtained by solving

$$\frac{\partial g}{\partial x_1} = -a_1 x_1 - a_2 x_2 - 1 + a_3 x_1^3 + a_4 x_1 x_2^2 + t \cdot \tanh^{-1} x_1 = 0, \qquad (5)$$

and 
$$\frac{\partial g}{\partial x_2} = -a_1 x_2 - a_2 x_1 + 1 + a_3 x_2^3 + a_4 x_1^2 x_2 + t \cdot \tanh^{-1} x_2 = 0,$$
 (6)

simultaneously. The reduced ferroelectric and antiferroelectric polarizations  $P_{\rm F}$ ,  $P_{\rm A}$  are expressed by

$$P_{\rm F} = (x_1 + x_2)/2, \tag{7}$$

and 
$$P_{\rm A} = (x_1 - x_2)/2,$$
 (8)

respectively. The reduced dielectric susceptibility  $\chi_{\rm F}$  is obtained as

$$\chi_{\rm F}^{-1} = \left(\frac{\partial^2 g}{\partial P_{\rm F}^2}\right)_{E=0} = \left(\frac{\partial^2 g}{\partial x_1^2} + \frac{\partial^2 g}{\partial x_2^2} + 2\frac{\partial^2 g}{\partial x_1 \partial x_2}\right)_{E=0}$$
  
=  $-2(a_1 + a_2) + 4a_4 x_1^{\rm s} x_2^{\rm s}$   
 $+ (3a_3 + a_4)\{(x_1^{\rm s})^2 + (x_2^{\rm s})^2\}$   
 $+ t[\{1 - (x_1^{\rm s})^2\}^{-1} + \{1 - (x_2^{\rm s})^2\}^{-1}].$  (9)

\* Inclusion of the third order terms did not cause a drastic alternation of the results.

1945

1977)



Fig. 8. Calculated reduced temperature *t* dependence of the dielectric susceptibility  $\chi_F$  for various values of  $a_2$ .  $a_1=0.45$ ,  $a_3=-0.5$ ,  $a_4=-0.2$ .

Starting from eq. (3) one may calculate using eqs. (5)-(9) the reduced values of dielectric susceptibility  $\chi_F$  and spontaneous ferro- and antiferroelectric polarizations  $P_{\rm F}^{\rm s}$ ,  $P_{\rm A}^{\rm s}$  as functions of t and  $a_i$ 's. The calculation was carried out numerically with an electronic computer FACOM 230-75 for various sets of  $a_i$ 's. Figure 8 shows the *t*-dependence of  $\chi_F$  for different values of  $a_2$ . Here the other parameters are fixed to be  $a_1 = 0.45$ ,  $a_3 = -0.5$ , and  $a_4 =$ -0.2. When  $a_2$  is less than 0.94, no phase transition takes place and the system is antiferroelectric throughout whole range of t. However, a broad peak of the susceptibility becomes progressively intense and sharp as  $a_2$ increases. In a range  $0.94 < a_2 < 1.0$ , the dielectric susceptibility shows two anomalies, and a ferroelectric phase (denoted as  $F_1$ ) is stabilized between them. When  $a_2$  is larger than 1.0, second ferroelectric phase  $(F_2)$  is stable in a lower t region. As  $a_2$  further increases the lower temperature peak of  $\chi_F$  is masked by the direct transition between two ferroelectric phases. Since the parameter  $a_2$  is assumed to be a linear function of pressure, Fig. 8 represents the temperature dependence of the susceptibility at various pressures corresponding to Figs. 1 and 2 for (NH<sub>4</sub>)<sub>3</sub>H(SO<sub>4</sub>)<sub>2</sub>. Figure 9 shows the  $a_2$  dependence of the inverse of the maximum susceptibility  $1/\chi_{\rm F}^{\rm max}$  in a region of  $a_2 < 0.94$ where ferroelectric phases are not stabilized. The inverse of the maximum susceptibility linearly decreases with increasing  $a_2$  and tends to zero at  $a_2 = 0.94$ . Figure 9 qualitatively represents the observed behavior of  $1/\varepsilon_{max}$  vs



Fig. 9. Variation of the inverse of the maximum susceptibility  $1/\chi_F$  with  $a_2$ .  $a_1=0.45$ ,  $a_3=-0.5$ ,  $a_4=-0.2$ .

*p* of  $(NH_4)_3H(SO_4)_2$  shown in Fig. 5. Figures 10 and 11 show *t*-dependence of the spontaneous ferro- and antiferro-electric polarizations  $P_F^s$  and  $P_A^s$  for different values of  $a_2$ , respectively.

In the limit of the present approximation the transition between two ferroelectric states  $F_1$  and  $F_2$  is isomorphous one;<sup>8)</sup> namely the symmetry of the crystal does not change during



Fig. 10. Reduced temperature *t* dependence of the spontaneous ferroelectric polarization  $P_{\rm F}^{\rm s}$  for different  $a_2$ ,  $a_1 = 0.45$ ,  $a_3 = -0.5$ ,  $a_4 = -0.2$ .



Fig. 11. Reduced temperature *t* dependence of the spontaneous antiferroelectric polarization  $P_A^s$  for different  $a_2$ .  $a_1=0.45$ ,  $a_3=-0.5$ ,  $a_4=-0.2$ .