
1977) 

structure was observed in Phase III . In the 
present calculation, however, the II- III transi­
tion and the long-period structure in Phase IIr 
are ignored for simplicity. The calculation only 
aims to interpret the experimental results 
qualitatively. 

The Helmholtz free energy A given by Mitsui 
for a clamped crystal is4

) 

P 2 2 V 
A= - 2(P 1 +P 2)-P'P IP2- ;(P1 -P2 ) 

kTN 2 {( 2P.) ( 2P .) + -4- .L I + -N I In 1 + N ' 
,= 1 /1 J-l 

( 
2P .) (2P.) } + 1- N~ In 1- N~ -21n2 , (I ) 
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where PI and P 2 are sublattice polarizations, 
/1 is the dipole moment of a molecular dipole 
unit, N is the number of the dipoles per unit 
volume. The parameter V measures the asym­
metry of the potential at a dipole site. 4

) As is 
well known the elastic Gibbs function for a 
free crystal contains higher order terms of P/s . 
Third order terms of P/s may be introduced 
because of existence of(P1 -P2) term in eq. (I). 
However, in the present calculation the third 
order terms are neglected; this means that the 
asymmetry parameter V is assumed to be 
independent of lattice strains. * Then, the 
resultant elastic Gibbs function G is expressed 
to the fourth order terms of P/s as ; 

G= - ~(P~+PD-P'PIP2 - : (P I-P2)+ ~(P~+P1)+ ~PiP~ 
kTN 2 {( 2P.) ( 2P .) ( 2P.) (2P .) } +- L 1+-' In 1+-' + 1--' In 1--' -21n2 . 

4 j = I NJ-l N/1 N/1 N/1 
(2) 

According to Ishibashi and Takagi 6
) eq . (2) is rewritten by introducing reduced quantities as; 

al 2 2 a3 4 4 a4 2 2 
g= - T(X I +X2)-a2XlX2 -(XI -X2)+ 4'(x l + X2)+ T Xt X2 

t 2 

+ 2 if:l {(I +Xj) In (1 +x j)+(I-X j) In (I-x j)}, (3) 

where g=2(G+kTN In 2)/(NV), XI =2Pd (N/1) , 
x 2=2P2/(N/1) , t=kT/ V, a l =PN/12 /(2V), a2= 
P'N/12/(2V), a3=~N3/14/(8V) , and a4= ( N 3/14 j 
(8 V) . 

The expansion coefficients a j are generally 
dependent both upon reduced temperature t 

and upon hydrostatic pressure p as aj = a?O + 
aJOt+a?lp+allpt+ ···. · For simplicity, tem­
perature dependence of aj is neglected. The 
effect of hydrostatic pressure is more significant 
for the lower-order expansion coefficients. 
Possible pressure variation of a l affects mainly 
the pressure coefficients of transition points, 
and it is ignored in the present calculation since 
the calculation aims to demonstrate the p-T 
phase diagram only in a qualitative way. Then, 
the next lowest expansion coefficient a2 is 
assumed to depend linearly upon pressure as 

(4) 

The other coefficients are assumed to be 
constants. 

The spontaneous sublattice polarizations 
r. , ~ are obtained by solving 

(5) 

and 

+a4X~X2 +t·tanh - I X2 =0, (6) 

simultaneously. The reduced ferroelectric and 
antiferroelectric polarizations PF , P A are ex­
pressed by 

and 

PF=(X I +X2)/2, 

PA =(X I -x2 )/2, 

(7) 

(8) 

respectively. The reduced dielectric susceptibility 
XF is obtained as 

-1 ( a
2g

) ( a
2g 

a
2
g a

2g
) XF = --2 = -2 +-2 +2---

aPF £=0 aX1 aX2 aX l aX2 £=0 

= -2(a l +a2)+4a4x~x~ 

+(3a3 +a4){(x~)2 +(XD2 } 
+t[{1-(xD2} - I+{1-(~)2} - 1]. (9) 

* Inclusion of the third order terms did not cause 
a drastic alternation of the results. 
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Fig. 8. Calculated reduced temperature f dependence 
of the dielectric susceptibility XF for various values 
of a2 • a, = 0.45, a3 = - 0.5, a4 = - 0.2. 

Starting from eq. (3) one may calculate using 
eqs. (5)-(9) the reduced values of dielectric 
susceptibility XF and spontaneous ferro- and 
anti ferroelectric polarizations p~, p~ as func­
tions of t and a/so The calculation was carried 
out numerically with an electronic computer 
FACOM 230-75 for various sets of a;'s. 
Figure 8 shows the t-dependence of XF for 
different values of a2 • Here the other parameters 
are fixed to be a 1 =0.45, a3 = -0.5, and a4 = 
-0.2. When a2 is less than 0.94, no phase 
transition takes place and the system is anti­
ferroelectric throughout whole range of t . 
However, a broad peak of the susceptibility 
becomes progressively intense and sharp as a2 

increases. In a range ' 0.94 < a 2 < 1.0, the di­
electric susceptibility shows two anomalies, 
and a ferroelectric phase (denoted as F 1) is 
stabilized between them. When a2 is larger than 
1.0, second ferroelectric phase (F2) is stable in 
a lower t region. As a2 further increases the 
lower temperature peak of XF is masked by the 
direct transition between two ferroelectric 
phases. Since the parameter a2 is assumed to be 
a linear function of pressure, Fig. 8 represents 
the temperature dependence of the susceptibility 
at various pressures corresponding to Figs. I 
and 2 for (NH4)3H(S04h. Figure 9 shows the 
a2 dependence of the inverse of the maximum 
susceptibility l/x'Fax in a region of a2 <0.94 
where ferroelectric phases are not stabilized. 
The inverse of the maximum susceptibility 
linearly decreases with increasing a2 and tends 
to zero at a2 =0.94. Figure 9 qualitatively 
represents the observed behavior of 1/8max vs 
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Fig. 9. Variation of the inverse of the maximum 
susceptibility I/XF with a2 ' a, = 0.45, a3 = -0.5, 
a4=-0.2. 

p of (NH4hH(S04)2 shown in Fig. 5. Figures 
10 and II show t-dependence of the spontaneous 
ferro- and anti ferro-electric polarizations p~ 
and p~ for different values of a2 , respectively. 

In the limit of the present approximation 
the transition between two ferroelectric states 
F 1 and F 2 is isomorphous one ;8) namely the 
symmetry of the crystal does not change during 
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F 
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Fig. 10. Reduced temperature f dependence of the 
spontaneous ferroelectric polarization Pf, for 
different a2. a, = 0.45, a3 = - 0.5, a4 = - 0.2. 

Fig. II. Reduced temperature I dependence of the 
spontaneous antiferroelectric polarization Pl for 
different a2 ' a, = 0.45, a3 = - 0.5, a4 = -0.2. 


